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Abstract

Results on the random assignment problem due to Aldous [2] are used to show

that the average rank of rank-optimal assignments is bounded by a constant that is

independent of the market size. This result was first shown by Nikzad [4] using a

different approach.
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1 Discussion

We consider an assignment problem with n agents and n objects. Each agent must be

assigned an object and each object can be assigned to exactly one agent. We consider the

problem of finding a minimum-cost assignment of agents to objects under the following two

cost matrices:

(a) The cost matrix X = [xij] with i.i.d. entries, each uniformly distributed in [0, 1].

(b) The cost matrix Z = [zij], with (zi1, zi2, . . . , zin) being a uniform random permutation

of the vector ( 1
n
, 2
n
, . . . , n−1

n
, n
n
)

Letting C denote any of these cost matrices, the object of interest in each case is the

cost of an optimal assignment given by

A(n,C) = min
π

∑
i

ci,π(i).
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The random assignment problem with cost matrix X has been investigated thoroughly

in the literature. In particular, the mean of this random variable, E[A(n,X)], has been

analyzed extensively and has been shown to converge to π2/6 as n → ∞. These results

have straightforward implications for the same problem when the cost matrix is Z.

We let i index the agents and j index the objects. Given a matrix X one can con-

struct a corresponding Z by letting zij = k
n

if and only if xij is the kth smallest entry in

{xi1, xi2, . . . , xin}. One can pass from Z to X in the same way as well: for each agent i,

generate n i.i.d. random variables {u1, u2, . . . , un}, each uniformly distributed in [0, 1]; and

rearrange these so that the kth smallest entry in this collection is set to be xij if and only

if zij = k/n.

Aldous [2] (see also Aldous [1]) proved the following remarkable results about the

optimal assignments for the cost matrix X:

Theorem 1

(a) limn→∞ E[A(n,X)] = π2

6

(b) Let qn(k) be the probability that (a fixed) agent i is assigned to an object with the

kth smallest value in an optimal assignment. Then limn→∞ qn(k) = 2−k for each

k = 1, 2, . . . , n.

Theorem 1 immediately implies the following bounds for E[A(n,Z)].

Theorem 2 limn→∞ E[A(n,Z)] ∈ [π
2

6
, 2].

Proof. Let π∗n be an optimal matching for the cost matrix X and let σ∗n be an optimal

matching for the cost matrix Z when there are n agents. (That is agent i is assigned object

π∗n(i) in the first matching and σ∗n(i) in the second matching.) By the correspondence

between X and Z, the expected cost incurred by agent i in the matching π∗n under the cost

matrix Z is given by
∑n

k=1
k
n
·qn(k). This implies the total expected cost of the matching π∗n

under the cost matrix Z is simply
∑n

k=1 kqn(k), as there are n agents. Using Theorem 1 (b),

we have

lim
n→∞

E[A(n,Z)] ≤ lim
n→∞

n∑
k=1

k · 2−k = 2,
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which establishes the upper bound.

For the lower bound, we again appeal to the correspondence between the X and the Z
matrices. Pick any permutation µ of the objects. Conditional on the ordinal preferences

of the agents over all the objects, indicated by the Z matrix, observe that the xi,µ(i) is

distributed as the kth order statistic of n Uniform [0, 1] random variables if zi,µ(i) = k/n,

for all permutations µ. Therefore, for all 1 ≤ i, j, k, ≤ n,

E[zij − xij | Z, zij = k/n] =
k

n
− k

n+ 1
=

k

n(n+ 1)
> 0. (1)

By Theorem 1 (a),

lim
n→∞

E
[ n∑
i=1

xi,σ∗
n(i)

]
≥ π2

6
.

Moreover,

lim
n→∞

E
[ n∑
i=1

xi,σ∗
n(i)

]
≤ lim

n→∞
E
[ n∑
i=1

xi,σ∗
n(i)

]
+ lim

n→∞
E
[ n∑
i=1

zi,σ∗
n(i) − xi,σ∗

n(i)

]
= lim

n→∞
E
[ n∑
i=1

zi,σ∗
n(i)

]
= lim

n→∞
E[A(n,Z)]

where the first inequality follows from the non-negativity of the second term established in

Eq. (1).

Nikzad [4] considered this problem and proved a bound of 73
4

and observed that sim-

ulations suggested a bound that is below 2. Making a direct connection to the random

assignment literature, which has generally dealt with i.i.d. and continuous distributions,

was left as an open problem in his work. The main purpose of this note is to make such a

connection and to observe that doing so makes the proofs simpler and the bounds sharper.

We end with a couple of additional remarks.

1. Simulations suggest that the value of limn→∞ E[A(n,Z)] is approximately 1.83, roughly

midway between the upper and lower bounds observed here. Finding the exact value

appears to be challenging. The exact values for small n are shown in Table 1.

2. The literature on the standard random assignment model suggests a path forward for

the case of finite n as well. Consider a cost matrix Y = [yij] with i.i.d. entries, each
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n 1 2 3 4 5

E[A(n,Z)] 1 5
4
(1.25) 49

36
(1.361) 13259

9216
(1.439) 310084531

207360000
(1.495)

Table 1: Exact Values of E[A(n,Z)] for small n

equally likely to be { 1
n
, 2
n
, . . . , n−1

n
, n
n

= 1}. This is a discrete model, but amenable to

the elegant primal-dual analysis of Karp [3] (see also Steele [5, Chapter 4]). A simple

calculation shows that E[A(n,Y)] < 3 for all n. A bound on E[A(n,Z)] follows by

observing that A(n,Y) is stochastically larger than A(n,Z) in the sense of first-order

stochastic dominance. The bound of 3 on E[A(n,Y)] is clearly not sharp. For large n,

it is intuitive that E[A(n,Y)] is larger than E[A(n,X)] by approximately 1/2, and this

can be verified by simulation, as well as by an argument along the lines of Theorem 2.

We omit these details because the bounds obtained are necessarily weaker than the

ones in Theorem 2.
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